Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 8(1): e2300452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37817378

RESUMO

Li-O2 batteries (LOB) performance degradation ultimately occurs through the accumulation of discharge products and irreversible clogging of the porous electrode during the cycling. Electrode binder degradation in the presence of reduced oxygen species can result in additional coating of the conductive surface, exacerbating capacity fading. Herein, a facile method to fabricate free-standing is established, binder-free electrodes for LOBs in which multi-wall carbon nanotubes form cross-linked networks exhibiting high porosity, conductivity, and flexibility. These electrodes demonstrate high reproducibility upon cycling in LOBs. After cell death, efficient and inexpensive methods to wash away the accumulated discharge products are demonstrated, as reconditioning method. The second life usage of these electrodes is validated, without noticeable loss of performance. These findings aim to assist in the development of greener high energy density batteries while reducing manufacturing and recycling costs.

2.
Sci Total Environ ; 912: 169225, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38101646

RESUMO

Research has demonstrated that polystyrene nanoplastics (PS-NPs) can have adverse effects on the immune responses of fish. NPs have the potential to increase the likelihood of infections in fish by pathogenic bacteria, such as the opportunistic pathogen Aeromonas hydrophila, potentially increasing the virulence of pathogenic bacteria infections in fish. The concurrent effects of PS-NPs and A. hydrophila on grass carp intestinal tissues were assessed by exposing grass carp to different concentrations of PS-NPs (10 µg/L, 100 µg/L, 1000 µg/L) after infection with A. hydrophila. As the concentration of PS-NPs in the exposure and the duration of A. hydrophila infection both escalated, intestinal tissues showed damage in the form of disordered breakage of intestinal villi, thinning of the intestinal wall, and reduced necrosis of the cells in the annulus muscle layer. The AHS-PS100 group and AHS-PS1000 group exhibited a substantial rise in the function of CAT, SOD, GST, and MPO, as well as increased MDA content and elevated ROS levels (p < 0.05). In the AHS-PS1000 group, the expression levels of IL-6, IL-8, IL-10, IL-1ß, TNF-α, and IFN-γ2 experienced a significant upsurge (p < 0.05). In addition, exposure to PS-NPs and A. hydrophila infection induced modifications in the microbial composition of the grass carp gut, affecting both phylum and genus taxonomic categories. Moreover, an increase in the abundance of Spirochaetota and Bacteroidota was observed not only in the positive control group but also in the AHS-PS100 and AHS-PS1000 groups following A. hydrophila infection. These experimental results indicate that PS-NPs exposure will aggravate the oxidative stress and inflammatory response of grass carp intestinal tissue in response to A. hydrophila infection, and lead to changes in intestinal microbial diversity and abundance. Overall, this study provides valuable hints on the potential concurrent effects of PS-NPs exposure on grass carp's response to A. hydrophila infection.


Assuntos
Carpas , Doenças dos Peixes , Microbioma Gastrointestinal , Animais , Transdução de Sinais , Imunidade Inata , Aeromonas hydrophila/metabolismo , Microplásticos/metabolismo , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Carpas/metabolismo , Proteínas de Peixes/metabolismo , Estresse Oxidativo , Ração Animal/análise
3.
Aquac Nutr ; 2023: 2716724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829512

RESUMO

Terrestrial compound protein (Cpro) can be potentially used to replace fishmeal (FM) in the marine carnivorous teleost, golden pompano (Trachinotus ovatus). Four isonitrogenous (45%) and isolipidic (12%) diets named FM30, AP80, PP80, and CP80 were formulated. FM30 (control) contained 30% FM and 25% basic protein, while AP80, PP80, and CP80 only contained 6% FM, where 80% FM and 25% basic protein of control diet were completely replaced by animal protein, plant protein, and Cpro, respectively. After golden pompano juveniles (initial weight: 10.32 ± 0.09 g) were, respectively, fed the four diets in floating sea cages for 10 weeks, the growth performance, intestinal digestive enzyme activity, and immune responses, protein metabolism indices of the CP80 group were similar to or better than those of the FM30 group (P > 0.05), and significantly better than those of the AP80 and PP80 groups. Specifically, the weight gain (WG), feed conversion ratio (FCR), activity of alanine transaminase (ALT), growth hormone (GH), and insulin-like growth factor-1 (IGF-1) contents of serum, mRNA level of interleukin-10 (il-10), zonula occludens-2 (zo-2), claudin-3, claudin-12, and eukaryotic translation initiation factor 4G (eif4g) were significantly higher, and the activity of α-amylase (AMS), lipase (LPS) in the foregut and midgut, interleukin-8 (il-8) expression in the intestine was significantly lower than that in the CP80 group, compared with those in AP80 and PP80 groups (P < 0.05). Moreover, the intestinal microflora composition of golden pompano fed with the CP80 diet was improved. Specifically, at the phylum level, the relative abundance of harmful bacterial strains cyanobacteria and TM7 of CP80 group was similar to those of FM30 group (P > 0.05), but was significantly lower than those of AP80 and PP80 groups (P < 0.05). At the genus level, the beneficial bacterial strains Agrobacterium and Blantia of CP80 group were also similar to those of FM30 group (P < 0.05), which were significantly higher than those of AP80 and PP80 groups, but the beneficial bacterial strains Bifidobacterium and Devosia of CP80 group were significantly higher than that in the other groups (P < 0.05). Besides, in diet CP80, the contents of amino acids and anti-nutritional factor, as well as the in vitro digestion rate were comparable to those of FM30, and the anti-nutritional factor content was between AP80 and PP80; total essential amino acids (EAAs) and methionine contents were higher than those in AP80, the glycine content was higher than that in PP80. Taken together, these results indicated that the CP80 diet had better amino acid composition and relatively low content of anti-nutritional factors, as well as high-digestion rate, and thus leads to the fish fed CP80 displaying improved effects in digestive enzyme activity, immune response, protein metabolism, and intestinal microbiota composition, which may be the important reasons to explain why that 80% of FM can be replaced by Cpro in the diet of golden pompano.

4.
Animals (Basel) ; 13(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37238133

RESUMO

In the context of human food shortages, the incorporation of non-grain feedstuff in fish feed deserves more research attention. Here, the feasibility and appropriate ratio of non-grain compound protein (NGCP, containing bovine bone meal, dephenolized cottonseed protein, and blood cell meal) for dietary fishmeal (FM) replacement were explored in golden pompano (Trachinotus ovatus). Four isonitrogenous (45%) and isolipidic (12%) diets (Control, 25NGP, 50NGP, and 75NGP) were prepared. Control contained 24% FM, whereas the FM content of 25NGP, 50NGP, and 75NGP was 18%, 12%, and 6%, respectively, representing a 25%, 50%, and 75% replacement of FM in Control by NGCP. Juvenile golden pompano (initial weight: 9.71 ± 0.04 g) were fed the four diets for 65 days in sea cages. There was no significant difference between the 25NGP and Control groups in terms of weight gain, weight gain rate, and specific growth rate; contents of crude protein, crude lipid, moisture, and ash in muscle and whole fish; muscle textural properties including hardness, chewiness, gumminess, tenderness, springiness, and cohesiveness; and serum biochemical indexes including total protein, albumin, blood urea nitrogen, HDL cholesterol, total cholesterol, and triglycerides. However, the golden pompano in 50NGP and 75NGP experienced nutritional stress, and thus some indicators were negatively affected. In addition, compared to the Control group, the expression levels of genes related to protein metabolism (mtor, s6k1, and 4e-bp1) and lipid metabolism (pparγ, fas, srebp1, and acc1) of the 25NGP group showed no significant difference, but the 4e-bp1 and pparγ of the 75NGP group were significantly upregulated and downregulated, respectively (p < 0.05), which may explain the decline in fish growth performance and muscle quality after 75% FM was replaced by NGCP. The results suggest that at least 25% FM of Control can be replaced by NGCP, achieving a dietary FM content of as low as 18%; however, the replacement of more than 50% of the dietary FM negatively affects the growth and muscle quality of golden pompano.

5.
J Phys Chem C Nanomater Interfaces ; 125(9): 4955-4967, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33763164

RESUMO

Li-O2 batteries offer a high theoretical discharge capacity due to the formation of light discharged species such as Li2O2, which fill the porous positive electrode. However, in practice, it is challenging to reach the theoretical capacity and completely utilize the full electrode pore volume during discharge. With the formation of discharge products, the porous medium evolves, and the porosity and tortuosity factor of the positive electrode are altered through shrinkage and clogging of pores. A pore shrinks as solid discharge products accumulate, the pore clogging when it is filled (or when access is blocked). In this study, we investigate the structural evolution of the positive electrode through a combination of experimental and computational techniques. Pulsed field gradient nuclear magnetic resonance results show that the electrode tortuosity factor changes much faster than suggested by the Bruggeman relation (an equation that empirically links the tortuosity factor to the porosity) and that the electrolyte solvent affects the tortuosity factor evolution. The latter is ascribed to the different abilities of solvents to dissolve reaction intermediates, which leads to different discharge product particle sizes: on discharging using 0.5 M LiTFSI in dimethoxyethane, the tortuosity factor increases much faster than for discharging in 0.5 M LiTFSI in tetraglyme. The correlation between a discharge product size and tortuosity factor is studied using a pore network model, which shows that larger discharge products generate more pore clogging. The Knudsen diffusion effect, where collisions of diffusing molecules with pore walls reduce the effective diffusion coefficients, is investigated using a kinetic Monte Carlo model and is found to have an insignificant impact on the effective diffusion coefficient for molecules in pores with diameters above 5 nm, i.e., most of the pores present in the materials investigated here. As a consequence, pore clogging is thought to be the main origin of tortuosity factor evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...